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Institute of Physics, PO Box 57, 11001 Belgrade, Yugoslavia

Received 4 September 2001
Published 26 October 2001
Online at stacks.iop.org/JPhysA/34/L617

Abstract
The coherent Jaynes–Cummings (JC) dynamics modified by a quasi-
instantaneous perturbation of the two-level system is discussed, and the
corresponding evolution operator is determined with the help of the
anticommutator analogue of the Baker–Hausdorff lemma. The evolution
operator leads to a coherent superposition of two JC evolutions, one with the
original values of the coupling constant and detuning, and the other with the
modified, effective values of these parameters followed (in the resonant case) by
a phase pulse. This leads to various possibilities for controlling and modifying
the final state of the harmonic oscillator depending on the choice of the initial
state and the perturbing phase and on the instant the perturbation acts.

PACS numbers: 03.65.Ca, 42.50.Ct

The dynamics of a single, two-level system which is coupled to a quantum harmonic oscillator
is described by the Jaynes–Cummings (JC) model [1] and has been a subject of considerable
interest (see, e.g. [2–7]). The model can be implemented in two representative scenarios in
quantum optics, namely ion traps and cavity QED. In ion traps the centre-of-mass motion of
the trapped ion is harmonic, and it couples to an internal atomic transition when the ion is
irradiated by a laser [8]. In cavity QED, the harmonic oscillator is a mode of the quantized
radiation field, coupled to a resonant electronic transition of atoms sent through the resonator
and undergoing JC dynamics [9]. In quantum optics it has become possible to create quantum
states of high purity [10]. In the view of potential applications, e.g. in a quantum computer,
the coherent control and monitoring of such quantum states is becoming important. Here we
discuss the coherent JC dynamics interrupted, at an intermediate instant, by a fast perturbation
of the two-level system. In particular, with the help of the anticommutator analogue of the
Baker–Hausdorff lemma, we determine the corresponding unitary evolution operator and find
that it leads to a coherent superposition of two JC evolutions, one with the original values of the
coupling constant and detuning, and the other with effective values of these parameters (that
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depend on the instant the perturbation acts) followed (in the resonant case) by a phase pulse.
This offers various possibilities of modifying and controlling the final state of the harmonic
oscillator.

Let us consider generally a nonresonant interaction between a two-level system, with lower
state |−〉 and upper state |+〉, and a harmonic oscillator, with annihilation and creation operators
â and â†, respectively. The eigenstates of the number operator n̂ = â†â are denoted by |n〉 with
n = 0, 1, 2, . . . . It is assumed that the transition energy of the two-level system, ε, is different
from the energy of the oscillator quanta, h̄ω, so that the quantity �ε ≡ ε − h̄ω (detuning) is
generally different from zero. The JC dynamics is described by the Hamiltonian [11, 12]

ĤJC = Ĥ0 + ĤI (1)

where Ĥ0 represents the free Hamiltonian

Ĥ0 ≡ ε

2

(
σ̂z ⊗ 1̂

)
+ h̄ω

(
1̂2×2 ⊗ n̂) (2)

and ĤI the interaction term

ĤI ≡ λ(σ̂+ ⊗ â) + λ∗(σ̂− ⊗ â†
)
. (3)

Here λ denotes the coupling constant, σ̂± ≡ 1
2

(
σ̂x ± iσ̂y

)
, and σ̂x , σ̂y and σ̂z denote the Pauli

spin matrices. The composite system, the two-level system plus harmonic oscillator, evolves
following this JC interaction for a total duration t . If at an intermediate instant, τ (0 < τ < t),
the JC evolution is interrupted by a quasi-instantaneous perturbation of the two-level system
of the form [13]

ĤP ≡ h̄ϕ(
σ̂−σ̂+ ⊗ 1̂

)
δ(t − τ) (4)

the coherent dynamics is described by the Hamiltonian Ĥ (t) = ĤJC + ĤP. In (4), ϕ represents
a phase. After the duration t , the evolution operator for the whole process is

Û (t, 0) = Û (t, τ + 0)Û(τ + 0, τ − 0)Û(τ − 0, 0). (5)

Since ĤP = 0 for any t �= τ , one has

Û (τ, 0)→ ÛJC(τ, 0) ≡ e− i
h̄
ĤJCτ Û (t, τ )→ ÛJC(t, τ ) = e− i

h̄
ĤJC(t−τ) (6)

and also

Û (τ + 0, τ − 0) = e− i
h̄

∫ τ+0
τ−0 Ĥ (t) dt = e−iϕ

(
σ̂−σ̂+⊗1̂

)
= e−i ϕ2

[
cos

ϕ

2

(
1̂2×2 ⊗ 1̂

)
+ i sin

ϕ

2

(
σ̂z ⊗ 1̂

)]
(7)

where in the last step one uses σ̂−σ̂+ = 1
2 (1̂2×2 − σ̂z). In the special case ϕ = π , equation (7)

reduces to σ̂z ⊗ 1̂. The evolution operator (5) becomes

Û (t, 0) = e−i ϕ2
[
cos

ϕ

2
ÛJC(t, 0) + i sin

ϕ

2
ÛJC(t, τ )

(
σ̂z ⊗ 1̂

)
ÛJC(τ, 0)

]
. (8)

This sum of two terms leads to a coherent superposition of straight JC evolution from zero to
t , with probability cos2 ϕ

2 , and two consecutive JC evolutions (from zero to τ and then from

τ to t) interrupted, at t = τ , by the unitary operator σ̂z⊗ 1̂. Now in the second term one would
like to exchange the position of the two factors, ÛJC(t, τ ) and σ̂z ⊗ 1̂, in order to obtain again
an uninterrupted JC evolution on the entire interval 0 → t . Unfortunately this is not possible
directly since the operator identity

[X̂ ⊗ Ŷ , X̂′ ⊗ Ŷ ′] = [X̂, X̂′] ⊗ Ŷ Ŷ ′ + X̂′X̂ ⊗ [Ŷ , Ŷ ′] (9)
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shows that [ĤJC, σ̂z ⊗ 1̂] = −2λ
(
σ̂+ ⊗ â

)
+ 2λ∗(σ̂− ⊗ â†

) �= 0. Instead, one splits the JC

Hamiltonian (1) into the sum of two commuting terms, ĤJC = Â + B̂, where [14]

Â ≡ h̄ω[
1
2

(
σ̂z ⊗ 1̂

)
+ 1̂2×2 ⊗ n̂] B̂ ≡ ĤI +

�ε

2
σ̂z ⊗ 1̂. (10)

One has [Â, B̂] = 0, so the two observables, Â and B̂, form a complete set of compatible
observables (their simultaneous eigenkets are the well known dressed states), alternative to
the complete set comprising the two observables σ̂z ⊗ 1̂ and 1̂2×2 ⊗ n̂ that provide the base
kets |±〉 ⊗ |n〉 ≡ |±, n〉. Additionally, [Â, σ̂z ⊗ 1̂] = 0 but [B̂, σ̂z ⊗ 1̂] �= 0. Therefore the
similarity transformation occurring in the second term of equation (8)

ÛJC(t, τ )(σ̂z ⊗ 1̂)ÛJC(τ, 0) = e− i
h̄
Â(t−τ) [

e− i
h̄
B̂(t−τ)(σ̂z ⊗ 1̂)e

i
h̄
B̂(t−τ)] e− i

h̄
B̂te− i

h̄
Âτ (11)

cannot be determined using the Baker–Hausdorff lemma. Fortunately, the anticommutator
{ĤI, σ̂z ⊗ 1̂} vanishes as can be seen using the operator identity

{X̂ ⊗ Ŷ , X̂′ ⊗ Ŷ ′} = {X̂, X̂′} ⊗ Ŷ Ŷ ′ − X̂′X̂ ⊗ [Ŷ , Ŷ ′]. (12)

One obtains from (10)

{B̂, σ̂z ⊗ 1̂} = �ε(1̂2×2 ⊗ 1̂
)

(13)

and the similarity transformation appearing in (11) can be established using the anticommutator
analogue of the Baker–Hausdorff lemma [15]

eX̂ Ŷ e−X̂ =
(
Ŷ + {X̂, Ŷ } +

1

2!
{X̂, {X̂, Ŷ }} +

1

3!
{X̂, {X̂, {X̂, Ŷ }}} + · · ·

)
e−2X̂. (14)

One takes X̂ → (−i/h̄)B̂(t − τ) and Ŷ → σ̂z ⊗ 1̂. The repeated anticommutators follow
from (13)

{B̂, {B̂, . . . {B̂, σ̂z ⊗ 1̂ } . . .}}︸ ︷︷ ︸
k

= �ε(2B̂)k−1 (15)

with k = 1, 2, 3, . . . , and one finds

e− i
h̄
B̂(t−τ)(σ̂z ⊗ 1̂

)
e

i
h̄
B̂(t−τ) = [

σ̂z ⊗ 1̂ +�εB̂(t − τ)]e 2i
h̄
B̂(t−τ) (16)

where we introduced the operator

B̂(u) ≡
∞∑
k=1

(−iu/h̄)k

k!

(
2B̂

)k−1 = 1

2

(
e

2i
h̄
B̂ − 1̂

)
(17)

which obviously commutes with Â. The similarity transformation (11) becomes

ÛJC(t, τ )
(
σ̂z ⊗ 1̂

)
ÛJC(τ, 0) = [

σ̂z ⊗ 1̂ +�ε B̂(t − τ)] exp

(
− i

h̄

(
Â +

2τ − t
t

B̂

)
t

)
. (18)

Here, Ĥ ′
JC ≡ Â+ 2τ−t

t
B̂ is the JC Hamiltonian with modified B̂ → B̂ ′ ≡ 2τ−t

t
B̂. Put differently,

the operator B̂ ′ is the old B̂ but with effective values of the coupling constant and detuning,

λ→ λ′ ≡ 2τ − t
t

λ �ε → �ε′ ≡ 2τ − t
t

�ε (19)

(see equations (3) and (10)) so that the usual JC evolution operator, Û ′
JC(t, 0) ≡ e− i

h̄
Ĥ ′

JCt ,
appears on the right-hand side of equation (18), only this time with the effective values λ′

and �ε′. Note that in the special case when the instant at which the fast perturbation acts is
τ = t/2 the effective values of the coupling constant and detuning vanish, λ′ = �ε′ = 0, so
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that B̂ ′ = 0, Ĥ ′
JC = Â and Û ′

JC(2τ, 0) ≡ e− 2i
h̄
Âτ . This last represents simply the evolution

operator for the unitary evolution of the composite system with noninteracting components.
Finally, the evolution operator (8), describing coherent JC dynamics modified by a quasi-

instantaneous perturbation of the two-level system, becomes

Û (t, 0) = e−i ϕ2
{

cos
ϕ

2
ÛJC(t, 0) + i sin

ϕ

2

[
σ̂z ⊗ 1̂ +�ε B̂(t − τ)]Û ′

JC(t, 0)
}
. (20)

This evolution operator leads to a coherent superposition of JC evolution from zero to t , with
probability cos2 ϕ

2 , and a JC evolution which is also uninterrupted on the entire interval 0 → t ,
but corresponding to the effective values of the coupling constant and detuning (19), and
which is followed by the operator σ̂z ⊗ 1̂ +�ε B̂(t − τ). This enables one to use the standard
results of the JC dynamics, which include description of for example quantum recurrence,
collapse and revival of the atom–field dynamics [11] but with added complexity arising from
the perturbation (4) leading to the coherent superposition occurring in (20). Here we discuss
briefly some special cases.

In case of resonant interaction of the two-level system and a harmonic oscillator, there is
no detuning (�ε = 0) and the term containing B̂(t − τ) is absent from equation (20). One
has a coherent superposition of two different JC evolutions, one with the original coupling
constant λ, and the other with the effective constant λ′ followed by a phase pulse σ̂z⊗ 1̂ (a fast
unitary operation applied to the two-level system that introduces a relative phase between the
levels). The value of the phase ϕ determines the relative contribution of the terms occurring
in equation (20). In the case when ϕ = π , only the second term survives:

Û (t, 0) −→ [
σ̂z ⊗ 1̂ +�ε B̂(t − τ)]Û ′

JC(t, 0) (21)

so that one has only the modified JC evolution (the one with the effective values of the coupling
constant and detuning, equation (19)), which is followed by the operator σ̂z⊗ 1̂ +�ε B̂(t− τ).
This last consists of the term describing the phase pulse and, in the case of nonvanishing
detuning, the term containing B̂(t − τ), which introduces interference of the two members
in (21). Another parameter that controls the relative importance of the terms of the coherent
superposition in (20) is the time, τ , at which the quasi-instantaneous perturbation acts. It
has already been mentioned that τ = t/2 leads to vanishing values of the effective coupling
constant and detuning, thus simplifying to the extreme the second JC evolution in (20). For
example, for ϕ = π the final state of the composite system matches the initial state (except
for the irrelevant phase pulse); the final state is then just the freely evolved initial state. On
the other hand, the value of τ close to zero increases the phase of the (complex) coupling
constant by π , λ′ ≈ eiπλ, and also effectively reverses the sense of detuning, �ε′ ≈ −�ε.
In this case, the situation is as if the JC dynamics were time reversed. All this offers
various possibilities of controlling and modifying the resulting, final state of the oscillator
depending on the initial state of the composite system. This latter is usually uncorrelated,
described generally by the density operator ρ̂(0) = |±〉〈±| ⊗ ρ̂oscillator(0). Thus, the two-
state system is initially in the upper(lower) state while the oscillator is in an arbitrary, pure
or mixed, state ρ̂oscillator(0) = ∑

n,m ρn,m|n〉〈m| (such as coherent, squeezed, thermal or
nonclassical maximum-entropy state etc). The final state results then from the coherent
evolution, ρ̂(t) = Û (t, 0) ρ̂(0) Û †(t, 0), with Û (t, 0) given by equation (20), and this is
determined employing the corresponding dressed state basis.

In summary, we have discussed the coherent JC dynamics modified by a quasi-
instantaneous perturbation of the two-level system of the form (4). The corresponding
evolution operator, (20), is determined with the help of the anticommutator analogue of the
Baker–Hausdorff lemma. This evolution operator leads to a coherent superposition of two JC
evolutions, one with the original values of the coupling constant and detuning, and the other
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with the effective values of these parameters, (19), followed (in the resonant case) by a phase
pulse. This leads to various possibilities for controlling and modifying the final state of the
harmonic oscillator depending on the choice of the initial state, the perturbing phase, ϕ, and
on the instant, τ , when the fast perturbation acts.
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